منابع مشابه
Focal Loss Dense Detector for Vehicle Surveillance
Deep learning has been widely recognized as a promising approach in different computer vision applications. Specifically, one-stage object detector and two-stage object detector are regarded as the most important two groups of Convolutional Neural Network based object detection methods. One-stage object detector could usually outperform two-stage object detector in speed; However, it normally t...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولUnsupervised Dense Object Discovery, Detection, Tracking and Reconstruction
In this paper, we present an unsupervised framework for discovering, detecting, tracking, and reconstructing dense objects from a video sequence. The system simultaneously localizes a moving camera, and discovers a set of shape and appearance models for multiple objects, including the scene background. Each object model is represented by both a 2D and 3D level-set. This representation is used t...
متن کاملGeneric Object Detection with Dense Neural Patterns and Regionlets
This paper addresses the challenge of establishing a bridge between deep convolutional neural networks and conventional object detection frameworks for accurate and efficient generic object detection. We introduce Dense Neural Patterns, short for DNPs, which are dense local features derived from discriminatively trained deep convolutional neural networks. DNPs can be easily plugged into convent...
متن کاملAttentional Object Detection with an Active Multi-Focal Vision System
A biologically inspired foveated attention system in an object detection scenario is proposed. Bottom-up attention is applied on a wide-angle stereo camera to select a sequence of fixation points. Successive snapshots of high foveal resolution using a telephoto camera enable highly accurate object recognition based on SIFT algorithm. Top-down information is incrementally estimated and integrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2020
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2018.2858826